首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   948篇
  免费   54篇
  2023年   6篇
  2022年   6篇
  2021年   30篇
  2020年   16篇
  2019年   14篇
  2018年   28篇
  2017年   26篇
  2016年   40篇
  2015年   63篇
  2014年   73篇
  2013年   70篇
  2012年   87篇
  2011年   85篇
  2010年   53篇
  2009年   31篇
  2008年   69篇
  2007年   65篇
  2006年   32篇
  2005年   39篇
  2004年   47篇
  2003年   34篇
  2002年   37篇
  2001年   3篇
  1999年   7篇
  1998年   12篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1982年   1篇
排序方式: 共有1002条查询结果,搜索用时 171 毫秒
61.
Ecdysteroids, primarily 20-hydroxyecdysone (20E) and ecdysone (E), are steroid hormones that regulate various developmental and physiological processes in insects. Commonly, immunoassays are used to quantify ecdysteroid titers of insects. However, the antibodies used in these assays react not only with 20E and E but often also with their inactive reserves and metabolites, and thus require purification before they can be quantified precisely. Here, we developed a simple cell-based method to quantify only the hormonally active ecdysteroids using newly established cells harboring the firefly luciferase gene under the control of the ecdysteroid-inducible promoter of the E75A gene of the silkworm Bombyx mori L. These cells also constitutively expressed the Renilla luciferase gene using the baculovirus ie2 promoter for internal reference. This cell-based method detected hormonally active ecdysteroids with significantly higher sensitivity than their inactive metabolites. Hemolymph ecdysteroid titers, determined using a dual luciferase assay after exposing these cells to crude extracts of B. mori larval and pupal hemolymph, agreed well with the sum of the 20E and E titers, which were quantified individually using a radioimmunoassay after they had been separated by HPLC. Thus, this method is very useful for quantifying the ecdysteroid titers of insects, particularly when the samples contain large amounts of ecdysteroid reserves and metabolites.  相似文献   
62.
The development of a high performance protein probe for the measurement of membrane potential will allow elucidation of spatiotemporal regulation of electrical signals within a network of excitable cells. Engineering such a probe requires a functional screen of many candidates. Although the glass-microelectrode technique generally provides an accurate measure of a given test probe, throughputs are limited. In this study, we focused on an approach that uses the membrane potential changes induced by an external electric field in a geometrically simple mammalian cell. For quantitative evaluation of membrane voltage probes that rely on the structural transition of the S1–S4 voltage sensor domain and hence have non-linear voltage dependencies, it was crucial to introduce exogenous inwardly rectifying potassium conductance to reduce cell-to-cell variability in resting membrane potentials. Importantly, the addition of the exogenous conductance drastically altered the profile of the field-induced potential. Following a site-directed random mutagenesis and the rapid screen, we identified a mutant of a voltage probe Mermaid, exhibiting positively shifted voltage sensitivity. Due to its simplicity, the current approach will be applicable under a microfluidic configuration to carry out an efficient screen. Additionally, we demonstrate another interesting aspect of the field-induced optical signals, ability to visualize electrical couplings between cells.  相似文献   
63.
Cancer stem cells (CSCs) have several distinctive characteristics, including high metastatic potential, tumor-initiating potential, and properties that resemble normal stem cells such as self-renewal, differentiation, and drug efflux. Because of these characteristics, CSC is regarded to be responsible for cancer progression and patient prognosis. In our previous study, we showed that a ubiquitin E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) suppressed breast cancer malignancy. Moreover, a recent clinical study reported that CHIP expression levels were associated with favorable prognostic parameters of patients with breast cancer. Here we show that CHIP suppresses CSC properties in a population of breast cancer cells. CHIP depletion resulted in an increased proportion of CSCs among breast cancers when using several assays to assess CSC properties. From our results, we propose that inhibition of CSC properties may be one of the functions of CHIP as a suppressor of cancer progression.  相似文献   
64.
Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.  相似文献   
65.
66.

Introduction  

Microvasculopathy is one of the characteristic features in patients with systemic sclerosis (SSc), but underlying mechanisms still remain uncertain. In this study, we evaluated the potential involvement of monocytic endothelial progenitor cells (EPCs) in pathogenic processes of SSc vasculopathy, by determining their number and contribution to blood vessel formation through angiogenesis and vasculogenesis.  相似文献   
67.
68.
We use a coarse-grained protein model to characterize the critical nucleus, structural stability, and fibril elongation propensity of Aβ1-40 oligomers for the C2x and C2z quaternary forms proposed by solid-state NMR. By estimating equilibrium populations of structurally stable and unstable protofibrils, we determine the shift in the dominant population from free monomer to ordered fibril at a critical nucleus of ten chains for the C2x and C2z forms. We find that a minimum assembly of 16 monomer chains is necessary to mimic a mature fibril, and show that its structural stability correlates with a plateau in the hydrophobic residue density and a decrease in the likelihood of losing hydrophobic interactions by rotating the fibril subunits. While Aβ1-40 protofibrils show similar structural stability for both C2x and C2z quaternary structures, we find that the fibril elongation propensity is greater for the C2z form relative to the C2x form. We attribute the increased propensity for elongation of the C2z form as being due to a stagger in the interdigitation of the N-terminal and C-terminal β-strands, resulting in structural asymmetry in the presented fibril ends that decreases the amount of incorrect addition to the N terminus on one end. We show that because different combinations of stagger and quaternary structure affect the structural symmetry of the fibril end, we propose that differences in quaternary structures will affect directional growth patterns and possibly different morphologies in the mature fiber.  相似文献   
69.
Directed cell migration is a fundamental component of numerous biological systems and is critical to the pathology of many diseases. Although the importance of secreted chemoattractant factors in providing navigational cues to migrating cells bearing specific chemoattractant receptors is now well-established, how the function of these factors is regulated is not so well understood and may be of key importance to the design of new therapeutics for numerous human diseases. While regulation of migration clearly takes place on a number of different levels, it is becoming clear that so-called 'atypical' receptors play a role in scavenging, or altering the localisation of, chemoattractant molecules such as chemokines and complement components. These receptors do this through binding and/or internalising their chemoattractant ligands without activating signal transduction cascades leading to cell migration. The atypical chemokine receptor family currently comprises the receptors D6, DARC and CCX-CKR. In this review, we discuss the evidence from in vitro and in vivo studies that these receptors play a role in regulating cell migration, and speculate that other orphan receptors may also belong to this family. Furthermore, with the advent of gene therapy on the horizon, the therapeutic potential of these receptors in human disease is also considered.  相似文献   
70.
In the bacterial genetic-code system, the codon AUA is decoded as isoleucine by tRNA(Ile)(2) with the lysidine residue at the wobble position. Lysidine is derived from cytidine, with ATP and L-lysine, by tRNA(Ile) lysidine synthetase (TilS), which is an N-type ATP pyrophosphatase. In this study, we determined the crystal structure of Aquifex aeolicus TilS, complexed with ATP, Mg2+, and L-lysine, at 2.5 A resolution. The presence of the TilS-specific subdomain causes the active site to have two separate gateways, a large hole and a narrow tunnel on the opposite side. ATP is bound inside the hole, and L-lysine is bound at the entrance of the tunnel. The conserved Asp36 in the PP-motif coordinates Mg2+. In these initial binding modes, the ATP, Mg2+, and L-lysine are held far apart from each other, but they seem to be brought together for the reaction upon cytidine binding, with putative structural changes of the complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号